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We present a new model of continuous (in time) position measurements on a quantum system
using a single pseudo-classical meter. The non-selective evolution of the system is described by a
master equation which is identical to that obtained from previous models. The selective evolution is
described by a stochastic nonlinear Schrödinger equation. The significance of this equation is that
the stochastic term has a physical interpretation. By carefully choosing the parameters which define
the meter and the system-meter coupling, we obtain a meter pointer with well-defined position which
undergoes fluctuations. This ’jitter’ in the pointer position gives rise to the stochastic dynamical
collapse of the system wavefunction. By the inclusion of feedback on the meter, the pointer is made
to relax towards an appropriate readout. We apply this model to the selective measurement of the
position of a particle in a double well potential. In contrast to a recent claim [Phys. Rev. A,
46, 1199 (1992)] we show that truly continuous position measurements lead to a quantum Zeno
effect in certain parameter regimes. This is manifest by the changing of the particle dynamics from
coherent tunnelling between the well minima to incoherent flipping, as in a random telegraph. As
the measurement strength increases, the average length of time the particle remains stuck in one
well increases proportionally.

I. INTRODUCTION

The simplest model for position measurement is of
course the projection postulate [1]. This is defined as
follows (in one dimension for simplicity). A measure-
ment of position X of a particle at time t has the result
X = x with probability |ψ(x)|2, where ψ(X) is the wave-
function of the particle in the position representation.
Immediately after the measurement, the particle is in a
position eigenstate with position probability distribution
δ(X−x). This model of measurement is unrealistic for a
number of reasons, the most important of which is that
the projected system state has infinite energy. Also, it
would desirable to have a model which would allow mea-
surements continuous in time, as this allows the investi-
gation of the so-called quantum Zeno effect [2–4]. This
is the purely quantum phenomenon by which continuous
measurement may arrest the evolution of the system.

A fruitful approach to develop more realistic measure-
ment models is to expand the Hilbert space used to in-
clude a meter which is coupled to the particle. The meter
is thus treated formally as a quantum mechanical system,
but is expected to have some properties which makes it
behave in a pseudo-classical manner. Of course, this does
not solve the quantum measurement problem. It is still
necessary to use the projection postulate on the meter.
However, by moving this cut one step away from the
system, we can hope for a more refined model. In the
construction of our model, we were guided by three con-
ditions which we believe apply to real laboratory meters:
(a) the system interacts with a single meter over time, (b)
the meter pointer is described by a continuous readout
parameter, and (c) the system evolution is well-defined
for any trajectory of the meter pointer.

The measurement model which we construct in Sec. II
shares much in common with an earlier model of Caves
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and Milburn [5] and a similar approach by Lamb [6]. The
most significant difference is that we have a single, well-
defined pointer variable [as defined in conditions (a) and
(b) above], rather than an succession of meters which
are thrown away after each measurement. In the meter
Hamiltonian we include a term, linear in the meter mo-
mentum, which shifts the pointer position. When the
amount of the shift is made to depend on the results
of measurement, this becomes a feedback stabilisation of
the pointer. The nett effect is to cause the pointer to
relax to a stable position determined by the measured
system variable. Also, we derive an explicit stochastic
Schrödinger equation for the wavefunction of the system
conditioned on the meter readout. Similar differential
equations have been proposed previously in the context
of measurement theory [7–11]. However these have not
been derived from a physical model for measurement in-
volving a meter pointer, and hence the system wavefunc-
tion obeying these stochastic Schrödinger equations does
not have a clear interpretation as a state conditioned on
the meter readout.

In Sec. III, we apply the position measurement model
to a simple and interesting case: a particle in a quartic
double well potential. Of particular interest is how the
measurement process disturbs the tunnelling of the low
energy particle from one well to the other. We show that,
in some experimental regimes, the quantum Zeno effect
can be observed. This is manifest in the behaviour of
the particle, which ceases to tunnel coherently between
the wells, and instead flips incoherently between them in
the manner of a random telegraph. The length of time
the particle remains stuck in one well is proportional to
the measurement strength. This result is in contrast to
a recent claim by Fearn and Lamb [12] to the effect that
there was no appearance of the quantum Zeno effect in
the tunnelling behaviour of a particle in a double well
system. As well as the full ponderomotive model, we
consider the two-state approximation which is valid for
particles with energy much lower than the barrier poten-
tial. The two states correspond to the particle localised
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in the left or right well. This approximation is useful be-
cause the nonselective evolution is completely solvable,
and the relation to the quantum Zeno effect has been
studied in depth [13]. In addition, we take the oppor-
tunity to compare our measurement model with the two
level example considered recently by Bonilla and Guinea
[14].

The act of measuring the position of the particle causes
its energy on average to increase linearly with time. The
particle energy will eventually become greater than the
potential barrier, and then the two-level approximation
will cease to give insight into the behaviour of the sys-
tem. The more accurate the measurement, the shorter
the time over which the approximation will be valid. For
weak measurements, this time may be much longer than
the tunnelling time. For very strong measurements, there
is no Zeno effect. Such measurements still cause the po-
sition variance of the wavepacket to be small, but the
energetic wavepacket moves violently rather than being
pinned to its starting point

II. MODEL FOR CONTINUOUS SELECTIVE
POSITION MEASUREMENTS

Consider a pseudo-classical meter with position and
momentum operators Q̂, and P̂ respectively. We use the
description pseudo-classical as we take the mass of the
meter to infinity and the commutator [Q̂, ˙̂

Q] → 0. Thus
the position of the meter, X(t) = 〈Q̂〉(t) is always well
defined, as is its velocity. We describe the state of the
meter by the ket |X(t), P (t)〉, which has the following
form in the Q representation (Q̂|Q〉 = Q|Q〉):

〈Q|X(t), P (t)〉 = (2πσ2)−
1
4 exp

{
− [Q−X(t)]2

4σ2

}

exp
{
i

h̄
QP (t)

}
. (1)

Here, the spread in the position σ will later be assumed
to be arbitrarily small so that the meter wave function
is well represented by its mean position X(t). Through-
out this paper we will generally be treating the state
|X(t), 0〉. In this state, the meter has an average mo-
mentum of zero. Throughout this paper, the meter will
be described by such a state. The meter moves only due
to its interaction with the system, the Hamiltonian of
which commutes with P̂ and is subject to a frictional
damping. We discuss how we achieve this below. Using
these states is not essential, but does make the analysis
simpler. The completeness relation for the states of the
meter is therefore

I =
∫

dX dP

2πh̄
|X,P 〉〈X,P |. (2)

We will later require the inner product between two such
states. This can readily be shown to be

C(X,Y ) = 〈X, 0|Y, 0〉 = exp
[
− (X − Y )2

8σ2

]
. (3)

We now turn our attention to the system, a particle
with position operator x̂. The system Hamiltonian H0 is

left arbitrary for the time being. The interaction between
the system and the meter is of the form

ĤSM = γP̂ [x̂− F ], (4)

where F is an arbitrary real number. In the case where
F = 0 then this system-meter interaction is that consid-
ered by von Neumann [15] and later by Refs. [4, 5, 13].
This interaction translates the position of the meter by
an amount proportional to the average position of the
system. In the case where F �= 0 then this term in the
interaction causes a displacement of the meter coordi-
nate. It has no effect on the dynamics of the system.

The state of the system-meter at time t is taken to be

|Φ(t)〉 = |X(t), 0〉 ⊗ |Ψ(t)〉, (5)

where |Ψ(t)〉 is a system ket. Then under the coupling
of Eq. (4), and the free system Hamiltonian H0, the
combined state at time t+ τ (for τ infinitesimal) is

|Φ(t+ τ)〉 = exp
{
− iγτ

h̄
P̂ [x̂− F ]

}
|X(t), 0〉

⊗|Ψ0(t+ τ)〉S , (6)

where the state of the system at time t + τ is approxi-
mately

|Ψ0(t+ τ)〉 = (1 − iτ

h̄
H0)|Ψ(t)〉. (7)

This evolution of the combined system-meter is purely
unitary. The meter has undergone the desired translation
due to the interaction with the system. The system has
undergone its usual free evolution and has a measurement
backaction operating on it due to the interaction with the
meter.

Now since the meter is pseudo-classical it should al-
ways be describable by X(t) with uncertainty σ. Its
large mass ensures that it will be negligibly perturbed
by a classical measurement process. Thus the effect of
observing the meter state should be well modelled by a
projection onto a new Gaussian state |X(t+τ), P (t+τ)〉.
This step (using the projection postulate) is necessary at
some stage in the measurement chain in order to describe
the result of the measurement. The positioning of this
formal procedure (the Heisenberg cut [16]) is essentially
arbitrary, but the higher up the chain from the system
to the observer the cut is placed the more accurate the
model of the measurement will be. Placing the cut after
the meter will yield a good description of the behaviour
of the system and the meter.

The reasons we choose to project the meter onto a
Gaussian state rather than an eigenstate of position as
in previous models [5] are two fold. Firstly it is more re-
alistic - creating a position eigenstate requires an infinite
amount of energy. Secondly, we wish to use the meter
again and so have it prepared in a Gaussian state as in
the previous measurement period.

We note that using a Gaussian state with nonzero aver-
age momentum P (t+τ) will eventually modify the system
dynamics and complicate the analysis. It is also our goal
to model a meter pointer that is relatively stationary so
as to enhance the accuracy of the readout. Such a model
well represents the usual laboratory situation. This can
be achieved by damping the momentum of the meter.



Physical Review A, 48(1), 132-1442 (1993) 3

Following Caves and Milburn [5], this damping can be
modelled by an instantaneous feedback term operating
on the meter momentum. We apply a displacement oper-
atorD[P (t+τ)] = exp(−iP (t+τ)Q̂) to the readout meter
state so thatD[P (t+τ)]|X(t+τ), P (t+τ)〉 = |X(t+τ), 0〉.

Following the projection and damping of the meter at
time t+τ the state of the system-meter, given the readout
result X(t+ τ), P (t+ τ) is

|Φc(t+ τ)〉 = P−1/2(X,P )|X(t+ τ), 0〉
〈X(t+ τ), P (t+ τ)|
exp

{
− iγτ

h̄
P̂ [x̂− F ]

}
|X(t), 0〉|Ψ0(t+ τ)〉

= P−1/2(X,P )|X(t+ τ), 0〉 ⊗ |Ψ̃c(t+ τ)〉,(8)

where we have defined an unnormalized system ket

|Ψ̃c(t+ τ)〉 = 〈X(t+ τ), P (t+ τ)|
exp

{
− iγτ

h̄
P̂ [x̂− F ]

}
|X(t), 0〉|Ψ0(t+ τ)〉, (9)

Here we use the subscript c to indicate that the state of
the system is conditioned on the previous readout vari-
able X(t). That is, we are considering selective evolution
of the system, hence the possibility of using a wavefunc-
tion rather than a density operator description.

The normalization term P (X,P ) is equal to the prob-
ability of obtaining the result X(t + τ), P (t + τ) and is
given by

P (X,P ) = 〈Ψ̃c(t+ τ)|Ψ̃c(t+ τ)〉. (10)

However, after setting the meter momentum to zero we
are not interested in the readout P (t + τ), but only in
the meter position X(t+ τ). The probability to obtain a
reading X(t+ τ) is P (X) and is given by

P (X) =
∫

dP P (X,P )

= tr ( ρ̂0(t+ τ)×
| C(X(t+ τ),X(t) + γτ [x̂− F ]) |2 ) , (11)

where we write ρ̂0(t+ τ) = |Ψ0(t+ τ)〉〈Ψ0(t+ τ)|. In this
equation we have resolved the exponential as a transla-
tion of the meter, and made use of Eq. (3). We note
that P (X) is given in terms of states with zero aver-
age momentum as the displacement operator D[P (t+τ)]
translates the meter state without changing the projec-
tion onto the Q̂ axis.

The mean and variance for the distribution of X(t+τ)
are

〈X(t+ τ)〉 = X(t) + γτ [〈x̂〉c − F ] (12)
V (X(t+ τ)) = 2σ2 + γ2τ2V (x̂). (13)

In order to obtain smooth evolution of the system, we
will show shortly that the following measurement param-
eter must be finite in the limit τ → 0:

Γ =
γ2τ

8σ2
. (14)

n σ ∼ τn γ ∼ τn−1/2 Ẋ(t) ∼ τn−1/2

1
2

√
τ 1 Well Defined

− 1
2

1/
√

τ 1/τ Not Defined

TABLE I: A finite parameter Γ = γ2τ/8σ2 in the limit τ → 0
gives smooth system evolution. Whether this also gives smooth
evolution of the meter pointer X(t) depends on how γ and σ
are scaled. The scaling can be defined by a real parameter n.
Two scalings of interest are given, the first being that used in
this paper and the second corresponding to the model of Caves
and Milburn [5]

The implications of this for the meter evolution is that in
Eq. (13), the 2σ2 term will dominate in the limit τ → 0.
In this case X(t+ τ) is well approximated by a Gaussian
random variable, and can be replaced by

X(t+ τ) = X(t) + γτ

(
〈x̂〉c(t) − F +

1
2
√

Γ
ξ(t)

)
, (15)

where ξ(t) indicates Gaussian noise of standard deviation
1/
√
τ . Since this term is independent from one τ incre-

ment to the next, in the limit τ → 0 it can be modelled
by white noise ξ(t) with 〈ξ(t)ξ(t′)〉 = δ(t− t′). Note that
F , which we have so far left arbitrary, can be chosen to
be a function of X(t), the previous measurement result.
This allows feedback on the meter position to prevent the
meter pointer from becoming unbounded, which was an
undesirable feature of previous models [5].

It is evident that Eq. (15) describes a driven me-
ter with position diffusion, providing that γ is finite as
τ → 0. This is a natural choice as we wish to follow the
dynamics of the meter pointer. However, it is not a nec-
essary assumption. The choice of scaling of γ fixes the
scaling of σ if Γ is to remain finite. The various possi-
bilities can be labelled by a real number n, as shown in
Table I.

Our choice corresponds to n = 1/2, in which the posi-
tion uncertainty of the meter goes to zero with τ . This
is consistent with our earlier statement that the position
of the meter is defined arbitrarily accurately.

Taking the limit τ → 0 in Eq. (15), we see that the
meter position X(t) obeys the following stochastic differ-
ential equation

Ẋ(t) = γ

[
〈x̂〉c(t)− F +

1
2
√

Γ
ξ(t)

]
. (16)

Here the effect of the feedback term F is evident. In
this paper we take F = X(t) and this corresponds to
the meter pointer relaxing at rate γ to the conditioned
system mean 〈x̂〉c(t). This is the motivation for the orig-
inal Hamiltonian coupling between the meter and the
system: it allows the position of the system to be read
(however inaccurately) from the position of the meter
pointer. Previous models [5] have treated the case where
F = 0, whereby the information about the system op-
erator of interest is encoded in the velocity of the meter
pointer, and an experimenter would have to extract this
information explicitly. The choice of the function F has
no effect on the system dynamics.

In addition to relaxing towards its appropriate value,
the meter pointer undergoes a ‘jitter’ due to the noise
term ξ(t) in Eq. (16). The size of this jitter can be
made small by taking the limit γ 
 Γ. However, as we
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will show [Eq. (21)], this would mean that the system
would collapse towards a position eigenstate on a time
scale Γ−1 much faster than the time scale γ−1 on which
the meter could respond. There is thus an obvious trade
off between the jitter and the response of the meter.

We return now to the evolution of the system, condi-
tioned on the meter readout X(t). From Eq. (8), the
combined state of the system and meter at time t+ τ is
a decoupled one, as it was at time t. We can thus write
the new conditioned system state at time t + τ , after
discarding the result P (t+ τ) as

|Ψc(t+ τ)〉 = P−1/2(X)|Ψ̃c(t+ τ)〉, (17)

where the unnormalized ket |Ψ̃c(t+ τ)〉 is defined in Eq.
(9).

This result can be simplified by substituting for the
meter evolution [Eq. (15)] and using Eq. (3) to evaluate
the inner product in Eq. (11). This gives

|Ψc(t+ τ)〉 = P−1/2(X)e−Γτ [x̂−〈x̂〉c− 1
2
√

Γ
ξ(t)]2

|Ψ0(t+ τ)〉. (18)

As we have obtained an exponential that is first order in
τ we can obtain a stochastic differential equation for the
evolution of the system. When we expand the exponen-
tial (carefully because of the noise term) we obtain

d
dt |Ψc(t)〉 =

(
− i

h̄
H0 − Γ

2
[x̂− 〈x̂〉c]2

+
√

Γξ(t)[x̂− 〈x̂〉c]
)
|Ψc(t)〉. (19)

It is interesting to note that this stochastic Schrödinger
equation is identical to that resulting from homodyne de-
tection [17] with the replacement â → x̂. Similar equa-
tions have also been considered in Ref. [7–11, 18, 19].
The significance of the approach considered here is that
we have an unravelling of the master equation as an en-
semble of stochastic, continuous trajectories for the state
vector of the system. Each of these trajectories has an
explicit interpretation in terms of the readout of a con-
tinuous pseudo-classical meter. This we believe to be a
new feature that may have important applications.

Later in this paper, we will be comparing our model
with that proposed by Bonilla et.al. [14]. The advan-
tage of our model is that the collapse of the system wave
function is a natural outcome of the measurement pro-
cess, as might be expected. This is in contrast to their
approach where a system-environment interaction is in-
troduced in order to achieve a collapse to an eigenstate of
the measured quantity. Also, their model does not guar-
antee correct measurement statistics. That our model
does guarantee this is evident from the nonselective mas-
ter equation (21) which we derive below. If the free evo-
lution from H0 can be ignored, then the statistics of the
measured quantity x̂ remains unchanged. Since an eigen-
estate of x̂ is also an eigenstate of the stochastic evolution
generator [Eq. (19)], again ignoring H0, this shows that
the system will end up in an eigenstate with the appro-
priate probability. It is when H0 cannot be ignored that
the superiority of our model over the projection postulate
emerges.

The stochastic Schrödinger equation (19) is easily
shown to be equivalent to the following stochastic mas-
ter equation for the selective evolution of the conditioned

density operator:

ρ̇c(t) =
−i
h̄

[H0, ρc]− Γ
2
[x̂, [x̂, ρc]]

+
√

Γξ(t) (x̂ρc + ρcx̂− 2〈x̂〉cρc) . (20)

This stochastic master equation is conditioned on the en-
tire history of the meter readout X(t). If we were only
interested in the non-selective evolution of the system,
then we would have to discard all knowledge of the evo-
lution of the system. This is achieved in the usual manner
of averaging over all possible meter readouts at all times
t. In our case this simply amounts to averaging over the
stochastic term in Eq. (20), which gives zero since ξ(t)
is independent of the system state at time t. The non-
selective master equation for the system is thus

ρ̇NS(t) =
−i
h̄

[H0, ρNS ]− Γ
2

[x̂, [x̂, ρNS ]] . (21)

This is the expected double-commutator form of the
non-selective master equation which usually arises from
system-meter couplings which do not disturb the mea-
sured quantity such as that employed in Eq. (4).

If H0 can be written as

H0 =
p̂2

2m
+ V (x̂), (22)

then the nonselective master equation (21) yields

d

dt
〈x̂〉 =

1
m
〈p̂〉 (23)

d

dt
〈p̂〉 = −〈V ′(x̂)〉. (24)

That is to say, the measurement term does not affect the
Ehrenfest relations. If V is a polynomial up to second
order in x̂, then these equations are closed. Thus the
measurement has no effect on the mean value of x̂ if the
particle moves in a linear or quadratic potential. This
means for example that no Zeno effect could be mani-
fest in such systems. In the following section we examine
motion in a quartic potential. It can be shown that the
effect of the measurement first appears with the fifth or-
der derivative

d5

dt5
〈x̂〉 ∼ −24cΓ〈x̂〉, (25)

where c is the coefficient of x̂4 in V (x̂).

III. TUNNELLING IN A DOUBLE WELL
POTENTIAL

In this section we apply our model to the measurement
of the position of a particle in a double well potential.
We demonstrate the measurement regimes in which the
quantum Zeno effect will be apparent.

The Hamiltonian for a particle in a quartic double well
potential is

H0 =
p̂2

2m
− mω2

0

4
x̂2 +

m2ω4
0

64D
x̂4, (26)
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FIG. 1: Free Evolution with Γ = 0. (a) Plot of the time
evolution of probability density for the system position x̂ of a
particle undergoing free evolution in a double well potential
(shown at rear of plot). With Γ = 0, the particle coherently
tunnels from the left to the right well. (b) Plot the time
evolution of the average position of the particle 〈x̂〉c (heavy
line) and the position standard deviation V (x) (dashed line)
for the same value of Γ as in (a).

where m is the mass of the particle, D is the height of the
potential barrier between the minima and ω0 is the fre-
quency of oscillation of the particle in one of the minima
(approximated as a quadratic potential). Such a dou-
ble well system has been extensively studied (see Refs.
[20, 21] and references therein). We transform to natural
units by setting m = h̄ = ω0 = 1. We obtain for the
Hamiltonian

H0 =
1
2
p̂2 − 1

4
x̂2 + βx̂4, (27)

where β = 1/(64D) and D is now dimensionless.
The double well potential has alternating odd and even

eigenstates. Those with energies well below the barrier
potential will be nearly degenerate in pairs, and super-
position of these pairs can be constructed so as to give
states well localised in the left or the right well. Such
states will be like coherent states of a harmonic oscilla-
tor centred on the minima of the respective wells. In this
paper we set the depth D = 1, which has the eigenvalue
structure for the double well shown in Table II.

We consider the first two such localised states, |+〉, and
|−〉, found in the right and left hand wells respectively.

|i〉 Ei ∆ Tt

|1〉 -0.54980 0.023923 131.32

|2〉 -0.52587

|3〉 0.09262

|4〉 0.39333

TABLE II: The eigenvalue structure of the double well treated
in this paper with depth D = 1. Also shown is the energy dif-
ference between the bottom pair of states ∆ and the associated
tunnelling time Tt.

These states are given by

|±〉 =
1√
2

(|1〉 ± |2〉) . (28)

We choose as our initial state |−〉 and monitor the time
the particle takes to tunnel to the right hand well when
its state is |+〉. This tunnelling occurs under free evolu-
tion, and the time taken Tt is given by the inverse energy
difference between the states |1〉 and |2〉

Tt =
π

∆
. (29)

We see this tunnelling behaviour clearly in Fig. 1(a).
Here we show the evolution of the probability density for
the system position x̂ under free evolution. With purely
unitary evolution, the system is completely equivalent
to a two-level system, because of the chosen initial con-
ditions. In Fig. 1(b) we show the time evolution of the
average position of the particle and the position standard
deviation. The numerical technique we used to simulate
the behaviour of the particle in the double well potential
is described in App. A.

A. Numerical Solution of exact system

It is obvious that vanishingly weak measurements
(Γ → 0) will not manifest the quantum Zeno effect. In
this limit there is no measurement backaction on the sys-
tem. However, it is also the case for the system con-
sidered here that too strong a measurement process also
makes the quantum Zeno effect unobservable. This arises
as the measurement backaction on the system tends to
increase the particles energy. A highly energetic particle
will not tunnel through the middle barrier; rather it will
pass over it. If we wish to observe the quantum Zeno
effect, we must limit the measurement backaction on the
system.

The measurement regime to demonstrate the Zeno ef-
fect can be established by considering a non-selective
measurement process. At any time the average energy
of the particle is given by Eqs. (21) and (27) as

ĖNS = tr(H0
˙̂ρNS)

=
Γ
2
. (30)

With the initial condition ENS(0) = E− = (E1 + E2)/2
we then have

ENS(t) = E− +
Γ
2
t. (31)
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FIG. 2: Random Walk regime with Γ = 0.001. (a) As in Fig.
1(a), with Γ = 0.001. The coherent tunnelling has a “random
walk” added. (b) As in Fig. 1(b). The meter readout is
shown by a dotted line. Since γ = 0.05, the “jitter” in the
meter is large.

In this paper we wish to observe tunnelling behaviour on
a time scale of about one tunnelling time Tt. For the
double well system we are using (see Table II) tunnelling
will occur as long as we do not excite level |3〉. We require
that ENS(Tt) 
 E3. This constraint gives

Γ 
 2
Tt

(E3 − E−) ∼ ∆. (32)

We see that the measurement strength must scale in-
versely with the time over which we wish to see tunnelling
behaviour. Of course, any measurement interaction with
Γ > 0 will eventually excite the particle enough to leave
the tunnelling regime. Once the particle is sufficiently
energetic, the quantum Zeno effect will not be observ-
able.

From the two level approximation in the next section,
it can be shown that the Zeno effect will exist only for

Γ >∼
∆
8D

. (33)

The two level approximation is strictly only valid for
D  1. There is thus a parameter region where the Zeno
effect may appear : ∆/8D <∼ Γ 
 ∆. For the well consid-
ered in this paper (D = 1), we require 0.003 <∼ Γ 
 0.01.
This window is rather narrow but is nevertheless present

FIG. 3: Random Telegraph regime with Γ = 0.003. (a) As
above with Γ = 0.003. The particle undergoes a random
telegraph type evolution from one minima to the other. (b)
As above.

as our numerical results show. As D → ∞, the Zeno ef-
fect would be manifest over a large range of measurement
parameter Γ. The reason that we use D = 1 rather than
D  1 as would be desirable is that the tunnelling time
increases like exp(16D/3) for large D [22], which would
make numerical simulations prohibitively time consum-
ing.

The selective evolution of the particle wavefunction un-
der position measurements is given by Eq. (19) with H0

given by Eq. (27). We gradually increase the effective-
ness of our measurement, and plot typical trajectories.
In each of these figures we show (a) a plot of the proba-
bility density for the position of the particle, and (b) the
average position of the particle (heavy line), the readout
meter variable (dotted line) and the standard deviation
in the position of the particle (dashed line). The read-
out meter parameters have been set fixed with γ = 0.05
and F = X(t). (See App. A for details of the numerical
method used.)

In Fig. 2, Γ = 0.001 and the particle undergoes a
diffusive random walk. This is seen most clearly in the
average position evolution. The “walk” is dominated by
the free unitary evolution. We note the large scale of
the “jitter” in the meter readout in Fig. 2(b). With the
chosen meter parameters the meter response [determined
by γ/

√
Γ in Eq. (16)] is too large. The response improves
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FIG. 4: The quantum Zeno effect with Γ = 0.005. (a) As
above with Γ = 0.005. We see strong evidence of the quan-
tum Zeno effect in the delayed transition from the left to the
right well. The particle position is somewhat squeezed. (b)
As above. (c)Plot of the ensemble average evolution of the
meter position (dotted line) and the (quantum) mean par-
ticle position (solid line). These nonselective averages were
calculated using an ensemble of 40 selective runs. The Stan-
dard Error (S.E.) in the mean particle position is also shown.
This clearly shows that the free evolution of the particle has
been arrested in the manner of a Zeno effect and is in good
agreement for short times with the theoretical curve for the
nonselective particle position calculated using the two level
approximation (dashed curve).

in later figures as Γ increases.

The transition to the random telegraph regime is seen
very clearly in Fig. 3 where Γ = 0.003. The particle is
trapped for some considerable time in the left well, and
then makes a random, and sudden transition to the right
hand well.

In Fig. 4 we are well into the regime where we manifest
the quantum Zeno effect with Γ = 0.005. The behaviour
is fully described by a random telegraph. Further, the
survival probability of the particle in the initial state is
significantly enhanced. During the time of observation,
the particle did not jump to the right well. This is the
quantum Zeno effect. Finally we discern some squeezing
in the particle’s position probability density under this
level of selective measurement. The squeezed particle
is more energetic, and we anticipate that our two level
approximation will break down and the quantum Zeno
effect cease for stronger measurements.

In addition to the typical selective trajectory, we in-
clude in Fig. 4(c) the ensemble average evolution of the
meter position and the (quantum) mean particle posi-
tion. These nonselective averages were calculated using
an ensemble of 40 selective runs. The results clearly show
that the free evolution of the particle has been arrested
in the manner of a Zeno effect. We also include a theoret-
ical curve for the nonselective particle position. This was
calculated using the two level theory of the next section,
but with the replacement of

√
8D by 2.48, as the latter

is a better approximation to the position of the particle
when it is localised in one of the wells. It is clear that the
theoretical curve is in good agreement with the numer-
ical results (within the standard error due to the finite
size of the ensemble), at least for times less than the free
tunnelling time Tt � 131. This is not unexpected, as we
know that the two level approximation breaks down for
times greater than Tt.

The complete breakdown of the two level approxima-
tion is confirmed in Fig. 5, where Γ = 0.01. The particle
is very energetic and is no longer trapped at the bottom
of either of the minima. The backaction of the strong
selective measurements is such that the particle has left
the two-level regime and is energetically oscillating across
the entire width of the double well potential. In a single
tunnelling time Tt the particle can be found any number
of times on the left or the right hand side of the double
well potential. The quantum Zeno effect can no longer
be observed.

The behaviour seen in this last plot is similar to that
observed in the results of Fearn and Lamb [12]. We be-
lieve that herein lies part of the explanation as to why
they failed to observe the quantum Zeno effect. Their
measurement parameters were apparently chosen so that
their particle became highly energetic very quickly, and
so could not remain trapped in one well. In addition,
their measurement model, unlike ours, does not corre-
spond to strictly continuous measurements, as required
to see the Zeno effect. We have demonstrated that a re-
alistic model for continuous position measurements of a
particle does result in the Zeno effect in at least some
experiments.
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FIG. 5: The energetic particle evolution with Γ = 0.01. (a)
As above with Γ = 0.01. The particle is very energetic and is
no longer trapped at the bottom of either of the minima. The
measurement backaction is so strong that the particle has left
the regime of the two level approximation, so we don’t expect
the Zeno effect to be manifest. (b) As above. The particle is
energetically oscillating across the entire width of the double
well potential. In this plot the particle can be found a number
of times on the left or the right hand side of the double well
potential. Note that the meter is lagging behind the higher
frequency oscillations.

B. The two level approximation

We have previously commented on the similarity of
the free evolution tunnelling behaviour of the particle to
that of coherent evolution of a driven two level system
(see Refs. [20, 21]). This approximation is explored in
this section. Our two level treatment has the additional
advantage of allowing us to compare our measurement
model directly to that considered by Bonilla and Guinea
[14].

As previously indicated, we are able use an approxi-
mate discrete two-level basis for a particle in the dou-
ble well potential provided that it has sufficiently low
energy so that the occupation of the energy eigenstates
is restricted to the lowest two states. This approxima-
tion effectively converts the position operator into a dis-
crete operator with eigenvalues “left” and “right”. In this
pseudo-discrete system, the quantum Zeno effect can be
readily manifest.

In the two level approximation, we use only the states

|1〉, |2〉 or equivalently, |+〉, |−〉. It can readily be shown
that the free Hamiltonian of the double well is equivalent
to

H0 =
∆
2

(
−1 0
0 1

)
1,2

= −∆
2

(
0 1
1 0

)
±

= −∆σ̂x. (34)

Here we use the usual Pauli matrices σ̂x, σ̂y, σ̂z as opera-
tors in the |±〉 basis. The position measurement operator
is

x̂ =
∞∑

i,j=1

〈j|x̂|i〉 |i〉〈j|

≈
2∑

i,j=1

〈j|x̂|i〉 |i〉〈j|

= 〈1|x̂|2〉 |2〉〈1| + H.c., (35)

where H.c. means the Hermitian conjugate. In deriving
the above we have made the two level approximation and
used the evenness and oddness of the eigenstates of the
Hamiltonian. Given this approximation we readily show
that

x̂ ≈
√

8D

(
−1 0
0 1

)
±

= 2
√

8D σ̂z. (36)

Here ±√
8D are the positions of the double well minima,

which for D  1 are very close to the mean positions of
the left and right wavefunctions.

We are interested in following the selective evolution of
the particle under position measurements, and also the
non-selective evolution when no account is taken of the
measurement results. For convenience we rewrite the rel-
evant evolution equations for the two level approximation
for the double well system. The stochastic Schrödinger
equation for the selective evolution of the state vector is

d
dt |Ψc(t)〉 = ( i∆σ̂x − 16DΓ[σ̂z − 〈σ̂z〉c]2

+4
√

2DΓξ(t)[σ̂z − 〈σ̂z〉c] ) |Ψc(t)〉. (37)
The non-selective master equation for the two level sys-
tem is

ρ̇NS(t) = i∆[σ̂x, ρNS ] − 16DΓ [σ̂z, [σ̂z, ρNS ]] . (38)

First we consider the selective evolution of our two
level tunnelling system. We define the components of
the Bloch vector as

X(t) = 〈σ̂x(t)〉
Y (t) = 〈σ̂y(t)〉
Z(t) = 〈σ̂z(t)〉. (39)

The evolution of the Bloch vector is readily shown to be

d
dt


 X

Y

Z


 =


 −16DΓ 0 0

0 −16DΓ ∆
0 −∆ 0





 X

Y

Z
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FIG. 6: The two level approximation. Plot of typical se-
lective evolution of the mean and standard deviation of the
position of a continuously monitored particle under the two
level approximation. (a) For Γ ≈ 0 the particle tunnels almost
unitarily from one minima to the other. (b) For Γ = 0.0003,
some “random walking” is seen but the particle’s motion is
still largely dominated by the unitary terms. As Γ increases
[(c) Γ = 0.003 and (d) Γ = 0.01] the behaviour of the particle
changes to a “random telegraph” type evolution. The quan-
tum Zeno effect is evident in the enhanced trapping of the
particle in the left well for large Γ.

+ 8
√

2DΓξ(t)


 −XZ

−Y Z
1
4 − Z2


 . (40)

This equation has no stable points for the case where
∆,Γ > 0. However, we gain an understanding of the
dynamics by considering each term separately. As for
the non-selective case, the deterministic term has sta-
ble point X = Y = Z = 0, representing a fully mixed
state. In contrast, the noise term has stable point
X = Y = 0, Z = ±1/2. These points correspond to the
two eigenstates |±〉 so it is evident that the measurement
term encourages collapse to one of the two eigenstates of
the measurement operator.

Herein lies the clearest statement of the difference be-
tween our model and that considered in Ref. [14]. [The
above equation for the dynamics of the Bloch vector com-
pares directly to their Eq. (3.9).] Our model incorpo-
rates the collapse of the wave function in a natural way
as a direct outcome of the interaction between a pseudo-
classical meter and the system of interest. Also the fact
that our nonselective master equation preserves the prob-
ability distribution for σ̂z ensures that the system tends
towards each eigenvalue with the correct probability, un-
like the model of Bonilla and Guinea [14].

In Fig. 6 we show typical trajectories of the system
with various measurement strengths Γ. Specifically, we
show the mean and variance of the position of the particle
(which is given by the Z component of the Bloch vector).
These trajectories show a strong similarity to those found
from the full ponderomotive model. For Γ = 0 we see
the unitary evolution of the particle as it tunnels from
one minima to the other. For Γ = 0.0003 we still see
tunnelling due to the unitary evolution, but there is some
noise superimposed, especially around the time when the
particle is not localised in either well. As Γ increases we
discern a gradual elimination of the unitary evolution.
For large Γ the particle undergoes a “random telegraph”
type evolution. The quantum Zeno effect is evident in
the enhanced time of trapping of the particle in the left
well for large Γ.

We now turn our attention to the deterministic terms
in this stochastic equation. These terms are those result-
ing from the non-selective evolution in Eq. (38). The
evolution of this two level system in the non-selective
case has been extensively studied [13]. With an initial
state |−〉 (X(0) = Y (0) = 0, Z(0) = −1/2), the general
solution is

X(t) = 0

Y (t) = − ∆
2Ω

e−8DΓtS(Ωt)

Z(t) = − 1
2Ω

e−8DΓt [8DΓS(Ωt) + ΩC(Ωt)] , (41)

where we have Ω =
√|(8DΓ)2 −∆2| and for 8DΓ < ∆

we set S(Ωt) = sinΩt, C(Ωt) = cosΩt and for 8DΓ > ∆
we set S(Ωt) = sinhΩt, C(Ωt) = coshΩt.

This nonselective evolution is shown in Fig. 7. We
plot the non-selective evolution of the average value of
〈x̂〉 for a particle initially well localised in the left well.
We vary the measurement parameter Γ. Under free evo-
lution, for Γ = 0 we see coherent tunnelling from one well
to the other. As the measurement parameter is increased
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FIG. 7: Plot the non-selective evolution of the average value
of position 〈x̂〉 for a particle for various values of the measure-
ment parameter Γ. As the measurement parameter increases
the free oscillations of unitary evolution become increasingly
damped. For very large Γ the survival time of the particle in
the left hand well is significantly enhanced, which is how the
quantum Zeno effect is manifest in the non-selective case.

this unitary evolution is gradually damped. Indeed, for
8DΓ > ∆ oscillations cease, and the particle probability
density gradually diffuses from the left well. For very
large Γ the survival time of the particle in the left hand
well is enhanced due to the non-selective measurement.
This is the non-selective quantum Zeno effect. Of course
this result applies to the real particle only as long as we
are able to successfully model the system with a discrete
measurement basis.

In all nonselective measurement regimes Γ > 0 the par-
ticle will evolve to the long time mixed state ρNS(∞) =
1
2I. Such a state can be considered as made up of an
ensemble of selectively measured systems. For weak
measurements each individual system is undergoing tun-
nelling with added noise due to the measurement back-
action, as seen in Fig. 6(b). The effect of this noise is
to cause different elements of the ensemble to become
dephased. This is the origin of the damped oscillation
seen in the nonselective (ensemble) evolution. In the
strong measurement limit the measurement backaction
dominates the evolution, causing the particle to act as
a two state “random telegraph”. This can be shown by
considering the non-selective evolution of the system as
above. In this case, we expect that the evolution is well
described by rate equations with equal transition prob-
abilities between the wells. That is, we should get an
equation of the form

˙̂ρ11 = − ˙̂ρ22 = −Rρ̂11 +Rρ̂22 (42)

Now, in the limit of large Γ, Eq. (41) gives the following

Z(t) ≈ −1
/
2 exp

(
− ∆2

16DΓ
t

)
. (43)

Since Z = 1
2 (ρ22 − ρ11), we see that this equation is

compatible to the rate equation [Eq. (42)] if we set the
random telegraph transition rate to be

R =
∆2

32DΓ
(44)

This demonstrates the clearest possible manifestation of
the quantum Zeno effect in that the transition probability
is inversely proportional to the measurement parameter.

IV. CONCLUSION

We have constructed a general model for the measure-
ment interaction between a quantum system and single
pseudo-classical meter. The meter is pseudo-classical in
the sense that its mass is so large that it always has a well
defined position and velocity. The system-meter interac-
tion Hamiltonian is the usual von Neumann one. The
meter state is measured innacurately at regular inter-
vals. By carefully choosing the parameters, it is possible
to take the limit of continuous measurements. Our cen-
tral equation is a stochastic Schrödinger equation which
describes the selective evolution of the system state un-
der measurement. This equation conditions the system
state on the measurement result, and tends to cause the
system to collapse towards an eigenstate of the measured
quantity. Feedback on the meter constrains it to behave
as an ideal laboratory pointer, tracking the position of
the system. It is the interpretation in terms of a realistic
coupling to a single finite meter which we believe is new
in this area.

The model is applied to monitoring the position of a
particle in a double well potential. This system exhibits
different behaviour depending on the relative strength of
the measurement. The free particle tunnels coherently
from one well to the other. With weak measurement,
the tunnelling persists, but with diffusive noise added.
This noise causes dephasing of the tunnelling within
the ensemble of pure state trajectories, which leads to
damped oscillations in the ensemble average (represented
by a density operator). As the measurement becomes
stronger, coherent tunnelling is replaced by incoherent
flipping. This is a manifestation of the quantum Zeno
effect, as the average time the particle remains stuck in
its initial well increases approximately linearly with the
measurement strength. This finding contradicts a recent
claim by Fearn and Lamb[12] that there is no Zeno effect
in a continuously monitored particle in a double well po-
tential . The nonselective evolution in this case exhibits
overdamping. For very strong measurements, the energy
of the particle increases so quickly that it does not re-
main localized in either well for any significant length of
time, and so the Zeno effect cannot be observed. We be-
lieve that it is this last type of behaviour which would
always be produced by the measurement model of Lamb
and Fearn, leading them to the wrong conclusion.

APPENDIX A: NUMERICAL METHOD OF
SIMULATION

In this appendix we describe the numerical method
used for solution of the stochastic Schrödinger Eq. (19)
in the double well. As long the particle is not to energetic,
we can use a truncated basis to model the system. Rather
than use the eigenstates of the Hamiltonian, we choose to
work in the well known number state basis for a harmonic
oscillator potential centred at the origin. Such states are
complete and have the position representation of

〈x|n〉 = π− 1
4 (2n!)−

1
2Hn(x)e−x2/2, (A1)

where Hn(x) is a Hermite polonomial. We transform to
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the operators

x̂ → X̂ =
1√
2
(a+ a†)

p̂ → Ŷ = − i√
2
(a− a†), (A2)

with the appropriate transformations of the free Hamil-
tonian. The initial state of the particle is |−〉, which is
localised in the left minimum of the double well potential.
This state is readily calculated in the number state basis.

For computational purposes we must eventually truncate
our number state basis. The validity of this truncation
can be immediately assessed by noting that the initial
state is well approximated by a coherent state |α〉 lo-
cated at α ≈ −2

√
D. As usual, this state has a number

state expansion peaked about the mean n̄ ≈ 4D = 4.
This suggests that a truncation of the number basis at
about 40 would be adequate. In this case the problem is
quite manageable on a computer.
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